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In order to provide fundamental bases for incorporating the effects of favourable
streamwise pressure gradients into models for internal turbulent flows and turbulent
boundary layers, time series measurements with a cross-wire probe and a wall shear
stress sensor were obtained simultaneously in an oil channel both for fully developed
and laterally converging flows. Data were concentrated in the viscous layer and at
the centreplane for slight to highly favourable pressure gradients. (Here the viscous
layer is defined as the region where viscous effects are significant, but not necessarily
dominant; it includes the ‘laminar’ and buffer sublayers in the terminology of some
investigators). Results presented include comparisons of the profiles of the mean
statistics, plus correlations and spectra, of streamwise and wall-normal components,
their product and the wall shear stress. The key new data are the measurements
of the fluctuating normal component and related statistics in the viscous layer for
highly favourable pressure gradients. For the outer half of the viscous layer its root-
mean-square fluctuations decrease as the pressure gradient is increased, consistent
with heretofore unconfirmed predictions from direct numerical simulations. Based on
examination of the probability density distributions, one may conclude that an effect
of a strong pressure gradient is to reduce transport of momentum in the outer part
of the viscous layer.

1. Introduction
Laterally converging flow is one version of a group of flows which lead to favourable

streamwise pressure gradients and, consequently, may modify characteristics of a tur-
bulent flow. ‘Strong’ favourable pressure gradients have been found to reduce viscous
drag by altering the structure of the turbulent velocity fluctuations. In fact, with a
favourable non-dimensional pressure gradient Kp of the order of −0.03 an apparent
‘laminarization’ of a turbulent boundary layer can occur (Narasimha & Sreenivasan
1979). (Kp = (ν/ρu3

τ ) dp/dx where ν, ρ, uτ , p and x denote kinematic viscosity,
fluid density, friction velocity, static pressure and streamwise coordinate, respectively.)
Others include sink flows (Spalart 1986; Jones, Marusic & Perry 2001), nozzle flows
(Launder 1964), flows around the leading edges of wings and turbine blades and
vanes (Mayle 1991), strongly heated internal gas flows (Shehata & McEligot 1998)
and fully developed duct and tube flows (Kim, Moin & Moser 1987; Durst, Jovanovic
& Sender 1995). In the last case, it is known, but apparently not well, that a low-
Reynolds-number turbulent flow may involve a strong favourable pressure gradient
even though the flow is fully developed and therefore not accelerating spatially.
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In the idealized case, a laterally converging flow is two-dimensional in circular
coordinates, i.e. in the streamwise direction, the flow is radially inward; this situation
is exemplified by flow between parallel disks with an exit at the centre of one. This
paper is the third in a sequence delving successively deeper into the structure of
laterally converging turbulent flows. The first considered the mean flow in terms
of the streamwise pressure distribution and wall shear stress as well as applying a
simple mixing-length model for their numerical prediction (Murphy, Chambers &
McEligot 1983, hereinafter referred to as MCM). The second by Chambers, Murphy
& McEligot (1983, hereinafter referred to as CMM) measured the temporal wall
shear stress and analysed it via the VITA technique of Blackwelder & Kaplan (1976).

The present work concentrates on the mean turbulence structure in the viscous layer
because it is typically the region where the largest gradients occur and the turbulence
production is largest. Following Bradshaw (1975), we are here defining the viscous
layer as the region where viscous effects are significant, but not necessarily dominant,
typically to y+ about 30 in a classical zero-pressure gradient case (it includes the
‘laminar’ and buffer sublayers in some terminology). The quantity y is the normal
distance from the wall and the superscript + here and later represents normalization
by wall units, ν and friction velocity uτ (= (τw/ρ)1/2 with τw symbolizing the mean wall
shear stress). The dominant uncertainties in momentum, energy and mass transfer
resistances occur in this layer. Liepmann years ago and Ichimiya (1995) suggested
that this region limits the turbulence fluctuations from the free stream and others note
that a solid wall damps primarily the turbulent fluctuations in the normal direction,
causing strong anisotropy, as it is approached (e.g. Hanjalic, Jakirlic & Hadzic 1997).
With a significant favourable pressure gradient, the popular constant shear layer
idealization is weakened, e.g. for a well-developed flow, the total shear stress τ is
given by (τ{y}/τw) ≈ 1 + Kpy+, so for Kp = −0.02, τ{y} decreases 60 % within the
viscous layer (the subscript w here and later denotes evaluation at the wall). To
examine the viscous layer, the present study employed the oil channel designed by
Reichardt at the Max Planck Institut für Strömungsforschung (now Max-Planck-
Institut für Dynamik und Selbstorganisation) to give excellent spatial resolution in
this region.

Previous studies of flows with favourable streamwise pressure gradients have been
summarized by Narasimha & Sreenivasan (1979), Spalart (1986) and MCM/CMM.
Considerable effort has been expended to identify criteria for modification and
laminarization and scaling to correlate the behaviour of dependent variables. An
effect of a favourable pressure gradient is to ‘thicken’ the viscous layer, in some
senses; bursting rates are reduced (Kline et al. 1967; CMM). The consequent upward
shift in the logarithmic region as the Reynolds number is lowered was identified by
McEligot, Ormand & Perkins (1966) via the mean velocity measurements of Senecal
(1952). Until recently, experimental constraints have normally made measurement of
v – and therefore of uv to deduce the Reynolds shear stress – impractical. Throughout
the remainder of this paper, the streamwise velocity is represented as ũ = U + u,
where the tilde denotes an instantaneous quantity and upper and lower case letters
symbolize the corresponding mean value and the fluctuation about it, respectively;
the normal velocity ṽ is treated in a similar fashion. In recent years, scholarly
work has mostly been devoted to attempts to simulate flows with pressure gradients
numerically, particularly with a variety of turbulence models (e.g. Hanjalic, Hadzic &
Jakirlic (1999)). Experimental measurements for strong favourable pressure gradients
are still sparse, particularly for the viscous layer (McEligot & Eckelmann 2003,
table 1).
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Based on definitions, continuity and momentum equations and empirical relations,
we can form approximate relations between some of the non-dimensional parameters
suggested as governing the flows. Streamwise acceleration is often represented by an
acceleration parameter (Kline et al. 1967) defined as

Kv =
(
ν/U 2

∞
)
dU∞/dx.

The subscript infinity indicates evaluation in the free stream. For a boundary-layer
flow, we can show Kv = −(cf /2)3/2Kp where cf is the skin friction coefficient, defined
as (2τw/(ρU 2

∞)). For fully developed flow in a duct, Kv is zero by definition and the
pressure-gradient parameter may be estimated as

Kp =
(
ν/ρu3

τ

)
dp/dx = ∼ − 20.1 Re−(7/8)

D,h

by employing a Blasius correlation (Patel 1965). The Reynolds number ReD,h here
is based on the bulk or mixed mean velocity and on the hydraulic diameter Dh

calculated as four times the cross-sectional area divided by the ‘wetted’ perimeter of
the duct. Consequently, some authors may have interpreted ‘pressure-gradient effects’
as ‘low-Reynolds-number effects’ and others may not have realized that their fully
developed internal flow could have entailed significant streamwise pressure gradients.
The distance yc to the centreplane, centreline or other thickness measure can be
represented as

y+
c = (ycuτ/ν) = (yc/Dh) ReD,h(cf /2)1/2 = ∼0.20(yc/Dh) Re7/8

D,h.

This quantity is also denoted as Reτ (= ycuτ/v) by some investigators (e.g. Kim et al.
1987).

When can the viscous layer be expected to be affected by a streamwise pressure
gradient? The governing momentum equation may be written

U+(∂U+/∂x+) + V +(∂U+/∂y+) = −Kp + (∂τ+/∂y+).

Near the wall, the solution for the total shear stress variation can be approximated
(Julien, Kays & Moffat 1969; Finnicum & Hanratty 1988) as

τ+{y+} = (τ{y+}/τw) = 1 + Kpy+[1 − (cf /(2y+))

∫ y+

0

(U+)2 dy+].

(The braces { } are used to indicate that τ+ is considered to be a function of y+.)
For a fully developed flow in a duct or tube, the convective terms become zero by
definition and this solution reduces to

τ+{y+} = (τ{y+}/τw) = 1 + Kpy+,

as mentioned earlier. For the effect of a pressure gradient to be negligible in the
viscous layer, we could establish a criterion that τ+ still be greater than 0.95 or
such at its edge (say y+ ≈ 30). This constraint translates to requirements such
as −Kp < 0.0017, ReD,h > 46 000 for channels and y+

c or Reτ > 600. In this sense,
a ‘low-Reynolds-number’ duct flow is inherently affected by a streamwise pressure
gradient.

The success of Bradshaw’s overlapping internal boundary-layer approach for ducts
(Bradshaw, Dean & McEligot 1973) implies that the turbulence in half of a duct is
affected by the lower-velocity eddies transported from the other half. If sufficiently
close, the consequent effect on the turbulence could affect the region near the viscous
layer and, in turn, the viscous layer itself. Thus, for the viscous-layer behaviour to
be similar in various geometries and flows, we need (i) the viscous layer to be small
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relative to geometric scales, and (ii) to have the same distribution of ∂τ+{y+}/∂y+

through the viscous layer. If we estimate that a distance of 10 y+
v would be adequate to

avoid interaction with other walls or free stream, it would lead to the requirement that
s+, δ+, r+

w or W+/2 (as appropriate) be greater than about 300. (The quantity y+
v is an

estimate of the viscous-layer thickness, δ+ is the boundary-layer thickness, r+
w is the

pipe radius and W+ is the the side length of a square tube, all in wall coordinates.)
Then we would expect reasonable agreement between viscous-layer results for a
tube and a channel at the same Kp and same y+

c provided that y+
c is more than

about 300. For the channel, this requirement corresponds to −Kp < ∼0.0033 and
ReD,h > ∼21 000.

From the momentum equation, we see the distribution of ∂τ+{y+}/∂y+ will be
a function of Kp alone provided the convective terms are zero or negligible. Fully
developed flows in tubes, channels and parallel-plate ducts inherently satisfy this
requirement. In the present viscous-layer study, the effect of the convective terms
is found to increase as y+ and/or |Kp| increase. One sees the magnitude of the
convective term in τ+ will be less than Kpy+cf (U+)2/2; taking half this value as an
order-of-magnitude approximation, we can estimate that the effect of the convective
terms will be 5 % or less, provided that −Kp is about 0.006 or less. This value
corresponds to y+

c ≈ 170 for parallel plates and 330 for circular tubes. So, for lower
|Kp| and higher y+

c , results for accelerating flows should agree with those from the
fully developed results in the viscous layer at the same Kp . As |Kp| increases to higher
values, the results should diverge as the convective terms become more important;
the trends with Kp should be the same, but magnitudes would differ at the same
Kp . Above this level, a given value of Kp for an accelerating flow would correspond
to a lower value for the fully developed flow, since the convective terms counter the
pressure gradient in the expression for τ+.

Some investigators have suggested conditions for ‘low-Reynolds-number’ effects to
become negligible, usually based on observation of the approximate logarithmic region
of a turbulent wall flow. Since the resulting level of a logarithmic curve fit through
data is a consequence of integration through the viscous layer, these conditions imply
criteria for affecting the viscous layer. Moser, Kim & Mansour (1999, hereinafter
referred to as MKM99) indicated that their direct numerical simulations at Reτ = 590
appear free of the most obvious low-Reynolds-number effects; this value corresponds
to −Kp ≈ 0.0017 (as suggested above). For their pipe flow, Durst et al. (1996)
mention that their velocity profile at ReD = 13 600 (Kp ≈ −0.0049) agrees with an
asymptotic logarithmic ‘law’ written as u+ = 2.5 ln y+ + 5. Here and later we employ
the traditional definition u+ = (U/uτ ) without confusion since fluctuations are not
mentioned directly in wall coordinates. Examining the channel flow measurements
of Durst et al. (1998) and comparing them to the logarithmic correlation, we can
estimate that for this geometry a value of −Kp < 0.0068 gives slight effects (less
than 5 % difference), −Kp > 0.011 or so gives strong effects (more than 10 %) and in
between these values, effects are expected to be moderate. (These values of −Kp are
above our approximate estimate for independence from geometry effects.)

1.1. Previous studies

While the details of many accelerating flows have been extensively studied (Murphy
1979; Narasimha & Sreenivasan 1979), few appear to have used lateral convergence
between parallel plates to examine turbulent flows with strong positive streamwise
pressure gradients (MCM; CMM; Singh, Vyas & Powle 1999). In the idealized
problem, the velocity is uniform at an entry at a large distance. The flow develops and
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may approach a fully established profile. Near the exit of the convergence, acceleration
dominates the flow in the centre of the duct, causing a flattening of the profile. The
profile takes the appearance of an external boundary-layer flow, with a large central
core flanked on both sides with thin boundary layers. The boundary layers become
successively thinner as acceleration continues. Depending on the entrance length and
flow rate, the regime may be laminar or turbulent, or an initially turbulent flow
may approach a laminar flow owing to the stabilizing effects of acceleration or a
favourable pressure gradient, i.e. so-called ‘laminarization’ may occur.

Analyses predicting the effects of streamwise pressure gradients on turbulent
boundary layers are now available from the work of MKM99 and Abe, Kawamura &
Matsuo (2001) for slight effects plus Spalart (1986) and Finnicum & Hanratty
(1988). Spalart conducted direct numerical simulations of sink-flow boundary layers
with acceleration parameters Kv between 1.5 × 10−6 and 3.0 × 10−6. He solved the
three-dimensional time-dependent Navier–Stokes equations using a spectral method.
Predicted effects of the favourable pressure gradients were to extend and displace
the logarithmic layer and to alter the energy balance of turbulence near the edge
of the boundary layers. Relaminarization was predicted for Kv = 3.0 × 10−6 (ap-
proximately −Kp = 0.025). Reasonable agreement was found with the spatial spectra
deduced by Jones & Launder (1972) from their temporal spectra data at Kv =
1.5 × 10−6 except that Spalart’s computed spectra did not collapse versus y. In
general, his results suggested that the logarithmic behaviour of the mean velocity is
more universal than the linear behaviour of a mixing-length model. Spalart compared
his predictions of r.m.s. velocity fluctuations for Kv = 1.5 × 10−6 and 2.5 × 10−6 and
found the peak value of (u′)+ to be about 2.35 in both cases. (The prime indicates that
the root-mean-square value of the fluctuation is being presented.) The peak values of
(v′)+ and (w′)+ decreased about 20 % and 25 %, respectively, as Kv (and −Kp) was
increased.

Finnicum & Hanratty applied the two-and-a-half dimensional computational model
of Nikolaides (1984) with bursting periods and streak spacing taken to vary as the
ratio between the wall shear stress and the mean shear stress at the assumed edge of
the viscous layer (their y+

o ). Empirical results were used for skin friction coefficients.
Phase relations at y+

o were assumed to be unchanged by the pressure gradient. For
a range Kv = 0, 2.0 × 10−6 (‘moderate’) and 2.8 × 10−6 (‘close to relaminarization’)
they predicted mean statistics of u and v and appropriate terms for kinetic energy
balances. Good agreement was seen with the direct numerical simulations of Spalart
(1986).

While duct flows can involve significant streamwise pressure gradients, most of
the direct numerical simulations have concentrated on conditions near Eckelmann’s
lower-Reynolds-number measurements (1974) at Res about 5400 or slightly more (e.g.
Kim et al. (1987), hereinafter referred to as KMM) so −Kp was about 0.0068 or less.
The definition of Res is based on the centreplane velocity Uc and the plate spacing
s. MKM99 extended the approach of KMM for fully developed channel flow at low
Reynolds numbers to higher flow rates. As the Reynolds number was reduced (−Kp

increased), they found a slight reduction in the profile of the r.m.s. streamwise velocity
component and larger reductions for the normal and spanwise components.

The direct numerical simulations generally predict that, as a favourable streamwise
pressure gradient is increased, there is no significant change in the streamwise
component, but that the normal and spanwise fluctuations would decrease observably.

Quantitative turbulence structure measurements with significant pressure gradients
are limited. In the past, they have often been limited to data with a single sensor,
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particularly in the viscous layer, owing to probe size concerns using air or water
as the fluid. Jones & Launder (1972) found that the peak Reynolds stress due to
turbulence became a progressively smaller fraction of the wall shear stress as Ku =
(ν/U 2

∞) dU∞/dx increased. In a study of large-scale motion, Blackwelder & Kovasznay
(1972) found that, when Ku exceeded ‘critical’ values, the viscous sublayer thickness
increased, the skin-friction coefficient at the wall decreased and large departures from
the turbulent logarithmic law of the wall occurred; to some extent, these aspects
can be predicted using advanced (and some simple) turbulence models (McEligot &
Bankston 1969; Rodi 1980).

For laterally converging laminar flow between parallel plates, Murphy, Coxon &
McEligot (1978) extended the numerical approach of Bankston & McEligot (1970),
as well as developing a similarity solution. MCM then applied the numerical program
to the conditions of an experiment they conducted with turbulent and apparently
laminarizing air flow converging between two plates separated by 1.3 cm (1/2 in).
With streamwise acceleration, the flow was continuously developing through the
entry region and downstream. Measurements were restricted to streamwise pressure
distributions and wall shear stress, since the spacing necessary and wall shear layers
were too small to introduce probes into the flow to determine the velocity distribution.
By comparison between data and predictions, they found substantial effects to occur
with convergence angles as small as 4◦ and showed that the results could be explained
by a thickening of the viscous layer.

In the same apparatus, CMM applied conditional sampling, by the VITA technique
of Blackwelder & Kaplan (1976), to the instantaneous measurements of wall shear
stress. They found the typical burst pattern, or conditionally averaged time history of
the wall shear stress, resembled the time history of the streamwise velocity component
measured by Blackwelder & Kaplan at y+ = 15. Families of conditionally averaged
time histories were selected at approximately equal Reynolds numbers and varying
acceleration parameters to compare with the results for fully developed flows.

For this flow problem, the results of MCM and CMM can be summarized as
follows: (i) for Kv > 4 × 10−6, laminar predictions are adequate for pressure distri-
butions and friction factors; (ii) for Kv < 10−7, the simple van Driest (1956) model
provides reasonable predictions; (iii) the temporal wall shear signal was consistent
with these observations; and (iv) as Kv increased, the non-dimensional bursting
frequency decreased, but the conditionally averaged signal remained approximately
constant until large Kv .

Sano & Asako (1993) and Sano & Shirakashi (1994) obtained measurements in a
duct with one wall alternately converging and diverging in a streamwise-periodic
fashion, giving a continuously varying, oscillating pressure gradient. For the two
configurations studied, maximum values of |Kp| of about 0.02 and 0.03 were
reached. Wall coordinates were estimated by fitting the linear layer, u+ = y+, as
far from the wall as possible. (For a zero-pressure-gradient flow, this technique would
underestimate the wall shear stress.) Sano & Asako concentrated on presenting the
variations of friction factor, U{y}, u′{y} and heat transfer parameters. They concluded
that significant changes appeared only in the diverging section, i.e. unfavourable
pressure gradient. Sano & Shirakashi employed a cross-wire probe as well as a single
wire and presented statistical measures of the observed behaviour, such as spectra,
correlations and probability density distributions. For the streamwise component,
some results were presented at estimated locations y+ ≈ 10, 15 and 20 in the viscous
layer, but only for y+ ≈ 100 for the normal component v. They concluded that
the wavenumber region between the maximum and minimum eddy scales becomes
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narrower in the accelerating region so that the eddy scale was decreasing (in physical
coordinates rather than being non-dimensionalized with wall coordinates).

The present work supplements several experiments on turbulent boundary layers
with streamwise pressure gradients. Ichimiya (1995) measured distributions of
streamwise mean velocity and turbulent fluctuations in a turbulent boundary, which
later experienced transition towards a laminar one and then relaxed as the flow
converged from a square duct to a narrower rectangular duct of the same width. The
resulting streamwise pressure gradient and acceleration parameters increased to peaks
and then decreased to constant and negligible values. The intermittency distribution
was also measured. Instantaneous time series and other statistical quantities were
obtained at y+ ≈ 30. Escudier et al. (1998) obtained data for streamwise mean velocity
and fluctuations and intermittency in a comparable experiment. In both experiments,
acceleration parameters above 4 × 10−6 were achieved and measurements were taken
with single hot wires so measurements of v (and uv) are not available in the viscous
layer.

Castillo & George (2001) considered the outer flow at high Reynolds numbers to
identify equilibrium boundary layers and found supporting data in earlier experiments;
their region of interest was well beyond the viscous layer as their treatment required
y+ > 100 and δ+ > 500. Jones et al. (2001) measured turbulent boundary layers
in sink flows at high Reynolds numbers. With acceleration parameters Kv from
2.7 × 10−7 to 5.4 × 10−7, they realized favourable pressure gradients (−Kp) between
0.0033 and 0.0054, approximately the same range as the DNS of MKM99 for fully
developed duct flow. While they were able to measure u′ to y+ as low as about twelve
with a single wire, the thin boundary layers and shear effects across the cross-wire
probe limited data for v′ (and uv for the Reynolds shear stress = −ρuv where the
overbar denotes the time mean value of the product of the fluctuations u and v) to
y+ greater than 40 (I. Marusic, personal communication 2005). Spalart & Watmuff
(1993) conducted an experiment with a varying streamwise pressure gradient to study
effects of unfavourable pressure gradients. However, their first measurement station
provided profiles for Kv ≈ 1.25 × 10−6 and Reθ > ∼600, giving −Kp ≈ 0.008 which is
slightly higher than those of Jones et al. The sensor lengths of their small cross-wire
probe were about 7.5 < l+s < 13 or about five times larger than the present probe (in
wall units). They noted difficulties near the wall and found measured values of v′ (and
w′ where w represents the spanwise velocity component) to be considerably less than
their DNS predictions in that region. Warnack & Fernholz (1998) and Fernholz &
Warnack (1998) measured turbulence distributions in axisymmetric turbulent
boundary layers with the acceleration varying in the streamwise direction to give
laminarizing and laminarescent conditions; peak values of −Kp ranged from 0.014 to
0.033, approximately. For their profiles with significant streamwise pressure gradients,
the actual measurements with a cross-wire probe for ṽ and uv and their statistics
were outside the viscous layer.

Durst et al. (1995) used a laser Doppler velocimeter with refractive-index-matching
techniques to determine distributions of u′, v′ and w′ in fully developed flow in
a circular tube (here w represents the circumferential velocity component). With a
minimum Reynolds number of 7440, their values of −Kp were about 0.008 or less.
By going to lower Reynolds numbers, Durst et al. (1996, 1998) reached values of Kp

of about −0.014 (tube) and −0.012 (channel), but only streamwise quantities were
reported.

Extensive detailed measurements (u, v, w, etc.) in the viscous layers of fully
developed channel flows have been reported by Eckelmann and coworkers (Eckelmann
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1974; Brodkey, Wallace & Eckelmann 1974; Kreplin & Eckelmann, 1979a–c). These
experiments were at Ucs/ν = 5400 (ReD,h ≈ 9300) or higher, so −Kp was about
0.0068 or less.

In summary, there is evidence that the turbulence structure is modified by
streamwise pressure gradients and there is a need to determine which features remain
relatively invariant in the viscous layer and to quantify the variation of the others in
order to provide the turbulence structure information required in models accounting
for their effects. Spalart’s DNS predictions of a reduction of (v′)+ for high-pressure
gradients do not appear to have been verified yet by experiments. Measurements of
v and uv are required. Until recently such measurements were usually not practical
because of spatial constraints. Now with laser-Doppler anemometry (Ching, Djenidi &
Antonia 1995; Fontaine & Deutsch 1995) in conjunction with refractive-index-
matching techniques (Thiele & Eckelmann 1994; Durst et al. 1995; Becker et al.
2002) and low velocities, we can measure v (hence uv) with good spatial resolution
and adequate precision to values of y+ less than unity. However, the flows identified
using these methods have only been applied for measurements of v (and uv) in
slight streamwise pressure gradients. The present study extends the experiments of
Eckelmann and colleagues to a laterally converging configuration to give time series
data for u, v, uv and τw for slight to strong favourable pressure gradients.

2. Experiment
In accordance with the needs indicated, the objectives of the present study are to

determine which features of the turbulence structure remain relatively invariant in
the viscous layer, to quantify the variation of the others with moderate to strong
streamwise pressure gradients and to confirm or refute the DNS predictions of
reductions in (v′)+ with increasingly favourable pressure gradients. The experiments
performed used the oil channel at the Max Planck Institut für Strömungsforschung.
This facility was designed originally by Reichardt to give high spatial and temporal
resolution in the viscous layer and has since been developed by Eckelmann (1974) and
his colleagues (Wallace, Eckelmann & Brodkey 1972; Wallace, Brodkey & Eckelmann
1977; Blackwelder & Eckelmann 1978; Kreplin & Eckelmann 1979a, c; etc.)

The oil channel and procedures employed in its use have been described in detail by
Eckelmann (1974). In this section, we will concentrate on the differences in apparatus
and techniques applied for the present study; only a brief overview will be given for
the aspects which are in common with the earlier work. Further details are provided
in a technical report by McEligot & Eckelmann (2003).

The channel is 22 cm wide and 1 m deep with a length of 8m (figure 1 of
Eckelmann 1974). In contrast to the 1.3 cm spacing in the experiment of MCM, the
plates forming this oil channel have much larger separation, so area blockage by
the probes is negligible. Also, at ReD,h ≈ 11 000 a distance of 1 cm corresponds to
y+ = 17, permitting high spatial resolution. The use of oil as working fluid and
low velocities leads to higher temporal resolution of fluctuating components than in
the common fluids, air and water. Velocity measurements are made with commercial
hot-film probes which are calibrated via a time-of-flight technique moving the support
cart along the channel.

For measurements with laterally converging flow, the channel floor was modified to a
convergence angle of 2◦ (figure 1) giving a potential intermediate range of acceleration
parameters 1 × 10−6 < Kv < 3 × 10−6 as desired to examine conditions where the
turbulence structure was expected to be modified. Data acquisition programs were
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Figure 1. Schematic diagram of experimental configuration (not to scale).

modified for digital application of the hot-film calibration as a function of the oil
temperature at low overheat ratios. Experimental studies of flow-induced vibrations
were conducted in order to design probe supports for measurements deep in the
channel near the lower surface.

One original concept of this oil channel, without convergence, was to approximate
an infinitely long parallel-plate channel by using the same dimensions for the return
channel as for the test section and by employing a specially designed turning pump
and turning vanes (see the plan view in figure 1 of Eckelmann 1974). For flow
development, the oil passes along a return channel approximately thirty spacings long
before passing through a series of curved vanes in a 180◦ bend, which forms the
entrance to the test channel. With a typical depth of 80 cm, the aspect ratio is about
3.6 for the open channel; with the free surface approximating a zero shear surface,
this configuration is comparable to a closed channel with an aspect ratio of 7. In the
test channel, with the ramp installed as shown schematically in figure 1, the entrance
region of �x/s ≈ 15 provides for further flow development ahead of the section
of length �x/s ≈ 17 converging to the minimum cross-section (‘throat’). The main
measurements in the converging section are taken at x/s ≈ 31 (or about one spacing
ahead of the throat), where a wall sensor is also mounted.

For direct comparison, measurements approximating fully developed conditions
(KV ≈ 0) were obtained by removing the ramp from the bottom of the channel.
Otherwise, locations remained the same. In an open-channel flow with a horizontal
floor and constant spacing of the walls, there is an inherent streamwise acceleration as
the fluid depth decreases while overcoming the wall friction; for the cases investigated
here, the equivalent Kv was less than 10−8.

Instantaneous velocity measurements were obtained with hot-film cross-wire probes,
a TSI model 1241 with bent prongs and a Disa type 55R61; a photograph of the
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former is shown by Johnson & Eckelmann (their figure 4, 1983). The non-dimensional
sizes of these probes were: cylinder diameter ∼0.07 < d+ < ∼0.12, sensor length
∼1.3 < l+s < ∼2.2 and sensor spacing ∼1.3 < s+

s <2.2, varying with experimental
conditions. No correction for sensor spacing was applied for the data; typical spacing
was of the order of one to two Kolomogorov lengths. The sensors were operated via
a Disa 55M01 anemometer system.

For both velocity probes, the sensors were calibrated by the time-of-flight technique
of Eckelmann (1974). The calibration technique has been described by Eckelmann and
the use of the calibration carriage on the channel is demonstrated in his figure 1. The
estimated uncertainty during calibration was based on the uncertainties in distance
and timing; it varied from about 0.03 % at low velocity to 0.1 % at the highest
velocity. Reproducibility of the imposed velocity varied from 0.15 % to 0.23 %. The
calibration data for each sensor were fit with a fourth-order polynomial of velocity as
a function of measured voltage, as developed by Randolph (1983). Typical agreement
between the polynomial and the data was of the order of 0.2 % and less.

Time series data were acquired via a DEC PDP-15 system from four hot-film
sensors simultaneously: a cross-wire probe for ũ{t, y} and ṽ{t, y}, a wall element
for τw{t} and a single fixed upstream sensor to serve as a reference (the symbol t

denotes time). Measurements were taken in the viscous layer (y+ ≈ 5, 7, 10, 15, 25)
and at the centreplane for Kv = 1.6 × 10−6 and Kv = 2.4 × 10−6 for the cases with
streamwise acceleration. Maximum significant turbulence frequencies were less than
5Hz and bursting frequencies were estimated to be of the order of 0.1 Hz or less.
Some additional measurements of mean turbulence quantities for fully developed flow
in the same channel are available at approximately the same Reynolds numbers for
comparison (Eckelmann 1974; Randolph 1983, 1987).

Klewicki & Falco (1990) reviewed earlier data to estimate the averaging times
necessary to deduce turbulence statistics accurately from time-series measurements
with thermal sensors. For channel flows, the most demanding requirement found was
a non-dimensional duration (2T Uc/s) greater than 5000 required by Eckelmann et al.
(1977) for ensemble averages in the Ölkanal of the present experiment. From their
own boundary-layer studies, Klewicki & Falco concluded that – to ensure accuracy
of 3 % – averaging times (T U∞/δ) of 1000 were required for mean and r.m.s. results
and 4000 for skewness factors. In the present experiment, durations (2T Uc/s) of 5545
to 7390 were employed.

The uncertainty in the mean-square value of a fluctuating quantity, such as (u′)2

(or (v′)2), can be estimated to be

σ(u′)2 ≈ [(u′)2]1/2/(N/2)1/2

where σu is the random uncertainty in u and N is the number of independent
realizations (Metzger 2002). This approximation can be rearranged to provide the
estimated experimental uncertainty in u′ as σ ′

u ≈ (σu/2)/(N/2)1/2 and correspondingly
for v′. The number of realizations can be estimated from the duration of the measure-
ments divided by a characteristic time deduced from a characteristic length (possibly
an ‘eddy’ size in a turbulent boundary layer) and a characteristic velocity. For a
channel, the characteristic length might be considered to be its spacing, depth or
length with the last being the most conservative (i.e. fewest realizations). In earlier
studies with the same channel, Kreplin found that – in order to achieve a reproducible
mean value of the velocity within 1 % – measuring times of 20 to 30 min were
necessary at Res ≈ 7700 and 15 to 40 min at Res ≈ 4700 (Kreplin 1973, 1976;
Eckelmann personal communication 2005). Kreplin’s observations are consistent with
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the selection of channel length as the characteristic dimension. For the present
estimates of uncertainties in u′ and v′, we employed the centreline velocity and the
conservative choice of channel length. Consequently, for our 200 000 samples over
4000 s, the number of independent realizations was estimated to be about 70 to 90,
depending on the experimental run.

For the cross-wire probe, the overheat ratio is set at about 5 % (rather than the
more common 1 % or 2 %) in order to reduce sensitivity to gradual temperature
variations. Despite control of the room temperature, these precautions are necessary
to reduce the uncertainties in the velocities to below 1 %. Development of the
temperature correction factor is summarized by McEligot & Eckelmann (2003,
Appendix A).

The theodolite technique of Eckelmann (1974) was employed to set the reference
location of the crossing of the sensors of the cross-wire probe to within about
±0.1 mm. For y < 30 mm, a dial indicator with an estimated reading uncertainty
of ±0.002 mm was used to determine transverse locations relative to this
reference. Beyond that distance a vernier rule was employed; it could be read to
±0.1 mm.

With oil, the streamwise pressure gradient corresponding to a significant value
of Kp is minuscule. Thus, it was difficult to obtain an accurate measurement of
dp/dx for determining τw (see § 3) and Kp . Several methods were considered and/or
attempted (McEligot & Eckelmann 2003, Appendix A). Ultimately, a ‘hook gauge
technique’ was applied (using a point gauge) (Marks 1916, p. 287). Essentially, the
drop in elevation of the oil surface �z was measured at several streamwise locations.
The pressure gradient dp/dx was then calculated from �z/�x via the hydrostatic
relationship. Precision of the individual measurements was about 0.05 mm which
propagated to an estimated experimental uncertainty of 0.14 mm for �z, comparable
to the measurement in some cases (the percentage uncertainty of �x was negligible).
Fortunately, the determination of τw (or uτ ) is insensitive to the estimated experimental
uncertainty in dp/dx (McEligot 1985, figure 4).

The one-point technique suggested by McEligot (1984, 1985) was extended slightly
and was applied to determine the wall shear stress. The wall sensor calibration was
done essentially in situ. The one-point technique deduces the mean wall shear stress
from the measured mean streamwise velocity U at a measured distance from the
wall, via a turbulence model for the viscous layer (Huffman & Bradshaw 1972). This
model accounts for the streamwise pressure gradient; as shown in figure 2, near
y+ ≈ 10, it is relatively insensitive to the value of Kp . The turbulence model yields
a mean velocity profile which is fit iteratively through the mean velocity measured
at a point with dependence on the measured pressure gradient. McEligot (1984)
presented the details including sensitivity to turbulence model and measurements,
resulting experimental uncertainties and the Couette flow analysis upon which it was
based. The turbulence models of McEligot & Bankston (1969), Huffman & Bradshaw
(1972) and Kays & Crawford (1980) are all based on modifying the constant A+ (in
a van Driest representation of the mixing length) for agreement with experiments –
and the functions A+{Kp} agree between them. For y+ < 10 and −Kp = 0.01, the
resulting mean velocity profile of Huffman & Bradshaw agreed with that of Kays &
Crawford to within about 2 %; the corresponding difference in the deduced value of
uτ is then about 1% between the two models. For the present data at −Kp ≈ 0.0083,
the DNS predictions of Mansour, Kim & Moin (1988) (with a slightly lower pressure
gradient) are about 3 % below the curve of Huffman & Bradshaw in the region where
it is adjusted to a data point. Suzuki & Kasagi (1992) have successfully employed
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Figure 2. Mean velocity predictions using function A{Kp} for the van Driest mixing length
model (1956) as deduced by Huffman & Bradshaw (1972).

this technique in comparing hot-film measurements in a water channel to a DNS
database.

For fully developed flows, the assumption that the convective terms are negligible
in the governing momentum equation

u+(∂u+/∂x+) + v+(∂u+/∂y+) = −Kp + (∂τ+/∂y+)

is ideally approached. However, for spatially accelerating flows, the relative magnitude
of these terms depends on the applied pressure gradient and the distance y from the
wall. To account for the convective terms, we adopted a suggestion of Finnicum
& Hanratty (1988) based on earlier work of Julien et al. (1969) which gives the
approximation

τ+{y+} = (τ{y+}/τw) = 1 + Kpy+

[
1 − (cf/(2y+))

∫ y+

0

(u+)2 dy+

]
.

The effect of the convective terms was evaluated for several accelerated flows of
interest by conducting the calculations with and without the correction. For y+ ≈ 10
and less, typical results showed differences of 1.5 % or less for Kp and 0.5 % or less
for uτ . Since values with the cross-wire probe at y+ near 10 are used to determine τw

for calibration and for calculating wall coordinates, the inclusion of the convective
terms led to no great change. Experimental uncertainties in the determination of the
friction velocity by this method are of the order of 1 %, comparable to the sensitivity
to the choice of turbulence model. With the cross-wire probe at y+ ≈ 10, it was away
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Ramp Kp ReD,h Res Kv

angle (deg.) Streamwise accelerating flows

2 −0.011 12 400 8300 1.6 × 10−6

2 −0.02 8280 5600 2.4 × 10−6

‘Fully developed’ flows
0 −0.0083 11 100 7400 6 × 10−9

0 −0.011 8300 5600 5 × 10−9

Table 1. Operating conditions.

from significant wall interaction but close enough that the uncertainty due to choice
of a turbulence model was minimal.

As explained in the section above, during calibration of the wall sensor, the mean
wall shear stress is determined by the one-point method as revised. The calibration
data are extracted from normal measuring runs. For the fully developed conditions,
measurements are available at four wall shear stress levels corresponding to runs at
four flow rates (or pump speeds). Thus, the flow is turbulent with the same fluctuating
field present during calibration as during application. Further details are provided by
McEligot & Eckelmann (2003, Appendix B).

Although the temperature of the room was closely controlled by thermostats, there
were slight variations from run to run during the overall period of the measuring
program, say ±0.1 K. During an individual run, the fluctuation was a few hundredths
of a degree at most. Since the overheat ratio used for the wall sensor operation was
relatively low (equivalent to about 10 K), a first-order temperature correction was
developed. The approach is comparable to that suggested by Morrow & Kline (1971).

In data reduction, a subroutine is employed to apply a correction for the (small)
difference between operating temperature and calibration temperature, to calculate the
velocity across the sensor and, for the cross-wire probe, to apply a calibrated relation
with the angular dependence to deduce the instantaneous velocity components. These
time series of velocity components are integrated to yield the various mean statistics
desired.

3. Results
The primary experimental results are the simultaneous measurements with the wall

sensor for τw and the cross-wire probe for u and v. Velocity data were concentrated in
the viscous sublayer at y+ ≈ 5, 7, 10, 15 and 25 (nominal values) plus the centreplane.
Typically, 200 000 samples of each signal were acquired for the time series. Four sets
of operating conditions were selected (table 1). This selection of conditions permits
separating effects of Kp from Res and from Kv . For example, at one (approximately
constant) Reynolds number there are data at two different values of Kp , and vice
versa.

Mean turbulence statistics and additional mean velocity profile measurements are
given by McEligot & Eckelmann (2003, tables 2 and 3). Results presented here
are these mean statistics, probability density distributions, selected auto- and cross-
correlations plus power spectra of the signals at y+ ≈ 15. This section presents those
results with discussion as appropriate. Usually our presentation is in terms of wall
coordinates, concentrating on the viscous layer.
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Figure 3. Streamwise mean velocity profile measurements (‘fully developed’: �, Kp ≈
−0.0083; �, Kp ≈ −0.011; laterally converging: �, Kp ≈ −0.011; �, Kp ≈ −0.020) as
compared with other authors (—, Mansour et al. (1988), channel, Kp ≈ −0.006; �, Senecal
(1952), tube, Kp ≈ −0.018; �, Senecal (1952), tube, Kp ≈ −0.014; �, Reynolds (1969), tube,
Kp ≈ −0.018; ∇, Durst et al. (1996), tube, Kp ≈ −0.014; �, Durst et al. (1998), channel,
Kp ≈ −0.012; �, Thiele & Eckelmann (1994), channel, Kp ≈ −0.006).

Mean velocity profiles. The present streamwise mean velocity profiles along with
other authors’ data are presented in figure 3 in terms of wall coordinates. The
present results are denoted by solid symbols, open symbols represent other author’s
data and the curve is from the direct numerical simulation by Mansour et al. (1988,
hereinafter referred to as MKM88). These results cover an approximate range 0.006 <

−Kp < 0.02 and geometries of circular tubes, rectangular ducts and infinite parallel
plates with Pitot tubes, thermal anemometry, laser velocimetry and DNS. The data
confirm known trends; as Kp increases in magnitude, the curves u+{y+} also have
higher values away from the wall (Patel 1965). This observation is one effect of
a streamwise pressure gradient on mean turbulence structure. It corresponds to a
thickening (in terms of y+) of the layer dominated by viscous effects as in the mixing-
length wall models of McEligot et al. (1966), Launder & Jones (1969), Huffman &
Bradshaw (1972) and others. The trend is also predicted by the direct numerical
simulations of Spalart (1986). Comparable data have been obtained by Jones &
Launder (1972) and Loyd, Moffat & Kays (1970) for converging (sink-like) flows, by
Shehata & McEligot (1998) for strongly heated gas flows in tubes and in turbulent
flows with drag reduction by polymer additives (Berman 1978; Harder & Tiederman
1989).

In figure 3, results for the lowest pressure gradients (Thiele & Eckelmann (1994) –
open diamonds, MKM88) still show slight effects compared to the asymptotic
‘universal velocity profile’ for high Reynolds numbers or low pressure gradient
conditions. The present data with larger values of −Kp show larger differences.
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The highest values of −Kp are those of Senecal (1952) and Reynolds (1969) from
circular tubes at Re ≈ 3000 (Kp ≈ −0.018) and the present data at Kp ≈ −0.02 for
laterally converging or accelerating flow. The tube results can be higher for a couple
reasons. First, y+

c is only about 110 for these experiments, so influences from the
far wall and ‘side’ walls are likely. Secondly, for the present accelerating flow, the
convective terms in the momentum equation can become important as y+ increases,
so the distribution of τ+{y+} would be equivalent to a fully developed flow that has
a lower value of −Kp . The second effect can also be seen in the present data by
comparing the fully developed run at −Kp ≈ 0.011 (inverted solid triangle) and the
accelerated run with approximately the same pressure gradient (solid squares); at
the larger values of y+, mean velocities for the accelerated run are slightly lower than
the fully developed one. These trends are essentially as expected when we consider
the differences in geometries and in flow development.

The deduced values of the transverse mean velocity V + for the viscous layer and
the centreplane are tabulated by McEligot & Eckelmann (2003, table 2). These data
can be subject to a variety of difficulties. The calculation of ṽ from cross-wire probe
signals involves determining the small difference between two much larger signals. (For
a fully developed flow, V is ideally zero and consequently percentage experimental
uncertainties are infinite.) In a fully developed flow in the same oil channel, Randolph
(1987) found that, as his cross-wire probe approached the wall, the measurements
yielded flow angles which were not parallel to the wall – a possible indication of
wall–probe interaction. Moin & Spalart (1988) modelled the behaviour of a typical
cross-wire probe via direct numerical simulations of a turbulent flow; they found that
neglecting the spanwise component w led to larger errors in v than in u and the
separation of the two films can have strong effects. Moin & Spalart did not present
calculations of the expected measured value for the mean V +{y+}, but, in general,
the predicted errors increased as y+ approached zero with dependence on w and the
calibration relations employed.

Other investigators have arbitrarily adjusted their sensor angles to force V to be
zero. For a laterally converging flow, V is not identically zero so we carry the values
actually deduced (and look for relative effects at the same locations). The mean values
V {y+} are all towards the wall except centreplane values for the fully developed flows.
The largest values appear at y+ ≈ 7 to 10 and then the magnitudes decrease as y+

increases. However, they are generally less than about 5% of the value of U at the
same y+. Although there are differences between the values of V +{y+} for the various
runs, there is no clear trend as Kp varies, and the difference at a given y+ is generally
within the experimental uncertainty.

Root mean square fluctuations. The normalized values of the r.m.s. velocity
components are plotted in figure 4. In these figures and the remaining ones, results
are presented only for channel flows.

Although the percentage experimental uncertainty of the mean normal component
is infinite for an ideal fully developed flow, the uncertainty in r.m.s. fluctuations can
be small enough to permit meaningful measurements. The experimental uncertainty
in v′ (or u′) is determined by random uncertainties (Metzger 2002) whereas bias error
plus random uncertainties contribute to the mean value. In the present experiment,
these random uncertainties come primarily from electronic noise of the anemometer
system, some noise in one amplifier and rounding error in the analogue-to-digital
conversion. These effects are reduced in the results by the precisions of the suppression
voltages which correspond approximately to the mean signals from the sensors.
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Figure 4. Root mean square values of velocity component fluctuations as compared with
other authors, (a) streamwise and (b) wall-normal. (Symbols as in figure 3 plus �, Kreplin
& Eckelmann (1979), channel, Kp ≈ −0.006 and �, Niederschulte et al. (1990), channel,
Kp ≈ −0.006).

The Disa 55M01 anemometer system was designed for low noise; Klewicki (personal
communication, 2004) indicates that the noise in the raw signal is typically between
one and three mv. The propagation of uncertainties leads to estimated uncertainties
of the order of 0.2 % or less for u′ and 0.8 % to 1.5 % for v′ within the viscous layer
in the run at Kp ≈ −0.0083, a fully developed condition. In the accelerated flow at
Kp ≈ −0.020, the comparable estimates are 0.22 % and less for u′ and 1.2 % to 1.9 %
for v′. For the comparisons in terms of wall coordinates, the estimated uncertainly in
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uτ is about 1 % and the uncertainty in y+ varies from about 1 % to 3 % depending
on the distance from the surface.

Comparisons are to the hot-film data of Eckelmann (Kreplin & Eckelmann
1979a–c), the LDV measurements of Niederschulte, Adrian & Hanratty (1990) and
Thiele & Eckelmann (1994) and the DNS of MKM88, all for fully developed flows
at relatively low −Kp . However, the data shown for Durst et al. (1998) for the
streamwise component are at −Kp ≈ 0.012, significantly higher than most of the
other fully developed flows. For (u′)+, the present fully developed runs (solid triangles)
agree well with hot film data of Eckelmann (1974) in the same channel and the
LDV measurements of Niederschulte et al. and show fair agreement with the LDV
measurements of Thiele & Eckelmann and Durst et al. plus the DNS results. The
maximum value approaches 3 at y+ near 15, in agreement with the data of Eckelmann
(1974) and others.

Conceptually, the distribution of (u′)+ may be affected by Reynolds number or
pressure gradient or both. Eckelmann compared his data at two Reynolds numbers,
corresponding to our two fully developed conditions. When non-dimensionalized with
wall coordinates (his figure 13) the data collapsed, i.e. there was no apparent effect
of Reynolds number. This observation is consistent with the results of MKM99, who
showed only a slight variation of the (u′)+ distribution over larger ranges of (low)
Reynolds numbers and therefore of −Kp . From the data of Fernholz & Finley (1996)
and their own, Metzger & Klewicki (2001; Metzger 2002) suggest that there is only
a gradual increase of (u′

max)
+ with Reynolds number, a factor of about 1.4 over four

orders-of-magnitude. In the present experiment, the difference between the lowest and
highest Reynolds numbers is only about 33 %, so no significant effect of Reynolds
number is expected. However, the measured Kp changes by a factor of about 2.5
so the question becomes whether it induces any significant modification of the (u′)+

profile. Our figure 4a for u′, using comparable wall scaling, shows the answer to be
negative. That is, for these measures of the turbulence structure, there appears to be
no important effect of the streamwise pressure gradient on the streamwise fluctuation
(u′)+.

Earlier, Reichardt (1938; Schlichting 1968), Durst et al. (1995), MKM99 and others
have shown that the mean value for (v′)+ should be less than that for (u′)+ and its
peak should occur further from the wall than for (u′)+. Durst et al. show (v′)+ of
about 0.8 to unity occurring near y+ ≈ 100. Therefore, in the viscous layer, (v′)+

increases monotonically and has a lower magnitude than (u′)+.
In figure 4(b) the present measurements of v′ are compared to those presented by

Kreplin & Eckelmann (1979c) with a hot-film cross-wire probe, Niederschulte et al.
(1990) by two-component LDV and by Thiele & Eckelmann (1994) with a customized
two-component LDV as well as the DNS predictions of MKM88 at Reτ ≈ 180.
Their studies were all for Kp of the order of −0.006 and fully developed low-
Reynolds-number channel flow (9800 < ReDh < 11 800). The estimated experimental
uncertainties of the present data are of the size of the symbols or smaller. The
non-dimensional length and spacing of the sensors for the data of Brodkey et al.
(1974) reported by Kreplin & Eckelmann (ls+ ≈ s+ ≈ 1.8) were comparable to the
present cross-wire probe at ReDh ≈ 8300; Niederschulte et al. had a smaller diameter
at d+ ≈ 0.26, but the length of their measuring control volume was l+ ≈ 1.8 which is
comparable to the spacing of the hot-film sensors in the present study. In the DNS
calculations, the grid spacing was �x+ ≈ 12, �y+ ≈ 1.0 and �z+ ≈ 7 at y+ ≈ 5
[KMM; MKM88; Mansour 2001]; the normal spacing �y+ decreased as the wall
was approached and increased at larger distances. The optical arrangement of the
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LDV of Thiele & Eckelmann reduced the size of its measuring control volume to
d+ ≈ l+ ≈ 0.53 so they tended to have the best spatial resolution of the investigations
shown here. The spatial resolution of the measurements was considerably better than
the DNS predictions in the streamwise and spanwise directions. The non-dimensional
sampling durations (2T Uc/s) of these studies were 1900 for Niederschulte et al., 5160
for Brodkey et al., 1040 (central region) to 9300 (near wall) by Thiele & Eckelmann
and 5550 to 7400 for the present data.

The present data for fully developed flow at the lowest pressure gradient (solid
upright triangles) agree closely with the simulations of MKM88 and the measurements
of Thiele & Eckelmann. For y+ less than 10 or so, most of the previous data are
seen to be higher that the DNS predictions; the data of Niederschulte et al. show
considerable scatter for y+ less than 5, but their average trend corresponds to the
results of Thiele & Eckelmann and the present study. The present data are consistent
with the observation that the DNS results appear to be low in this region. In the
current study, the raw data for the mean normal velocity were slightly negative
near the wall (McEligot & Eckelmann 2003) so this apparent inflow could carry
slightly higher values of v′ into this region; whether this situation occurred in the
other studies is not clear. For y+ greater than about 7, the present data for low
Kp (upright triangles) agree with the DNS predications as well or better than the
others do.

The predictions from the DNS of sink flows by Spalart (1986), the analysis of
Finnicum & Hanratty and the duct flows by MKM99 indicate that increasing the
streamwise pressure gradient should produce observable effects on (v′)+ in the viscous
layer – but this variation had not been confirmed experimentally. The idea that
v′{y+}/uτ may not be independent of streamwise pressure gradients is tested by our
figure 4(b) as well as being addressed in the analysis of Finnicum & Hanratty (1988,
figure 7) and the direct simulations of Spalart (1986, personal communication 1990).
A trend is seen towards a reduction in v′{y+}/uτ with increase in the magnitude
of −Kp , more favourable pressure gradients. The question is how large is the
effect?

To examine the effects of increased streamwise pressure gradient or acceleration
on (v′)+, it is convenient to compare the data at the lowest −Kp (upright triangles)
to those at the highest (circles). For these two runs, the measured −Kp increases
from 0.008 to 0.020, Kv increases from near zero to 2.4 × 10−6 and ReDh decreases
from 11 100 to 8280. Within the viscous layer, we see a relative reduction in (v′)+

as y+ and the streamwise pressure gradient increase. At y+ ≈ 25, this reduction
relative to MKM88 is about 36 %. The DNS predictions of MKM99 cover a range
of −Kp from about 0.0056 to 0.0017 as ReDh is increased from about 11 200 to
45 000. Their overall change in (v′)+ was about 13 % whereas for the increase of
−Kp from 0.0017 to 0.0026, their reduction was only about 1 %. From comparison
to their results, it appears that the reduction of (v′)+ in the present data may be a
consequence of increased pressure gradient (or related acceleration) in addition to the
change in Reynolds number. Since the converging run at −Kp ≈ 0.020 in the present
experiment was at approximately the same Reynolds number as a fully developed
run (ReDh ≈ 8300, −Kp ≈ 0.011, inverted triangles), the phenomena can be separated
to some extent. With the Reynolds number approximately constant, the reduction in
(v′)+ is seen to be about 28 %. Finnicum & Hanratty predict a drop of about 40 %
from Ku = 0 to 2.0×10−6 while Spalart’s results suggest about 25 % for Ku increasing
from 1.5×10−6 to 2.5×10−6, both at y+ ≈ 25. Our data essentially confirm the trends
of these predictions.
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Figure 5. Variation of Reynolds shear stresses compared to other authors and to asymptotes
(dashed) for fully developed flow (symbols as in figures 3 and 4).

Reynolds shear stress (= −ρuv where the overbar denotes the time mean value of
the product of the fluctuations u and v). With the dimensions of the channel and
the flow rates yielding centreline values of y+ in the range of 140 to 210 in the
present experiment, the total shear stress varies observably across the viscous layer.
Therefore, the popular constant shear-layer approximation is not valid, even for the
fully developed flows. For the effect in the viscous layer to be less than about 5 %,
the centreplane value y+

c (or Reτ ) should be about 600 or more.
As noted above, for fully developed flow, the total shear stress variation is given as

τ+{y+} = (τ{y+}/τw) = 1+Kpy+ (with accelerating flows, at large y+, the convective
terms counter this reduction somewhat). At the wall u = v = 0, so uv is likewise zero
there. Since

τ{y} = µ(∂U/∂y) − ρuv or τ+ = (∂U+/∂y+) − (uv)+,

the Reynolds shear stress increases with y in the viscous layer, approaching the
total shear stress relation as the turbulent transport becomes dominant relative to
viscous effects. (The symbol µ represents the absolute viscosity.) That is, for fully
developed flows, the quantity 1 + Kpy+ forms an asymptote for (uv)+. Consequently,
(uv)+ should approach a peak at a magnitude that decreases as −Kp increases. For
accelerating flows the comparable peak will have a different value and location.

The present results are shown in figure 5 along with those for the fully-developed
flows at Kp ≈ −0.006 by Niederschulte et al., by Thiele & Eckelmann and by
MKM88. Approximate asymptotic values for τ{y+} versus Kp in the viscous layer
are provided as dashed lines. The predicted curve from MKM88 can be seen to
be approaching its asymptotic curve for −Kp ≈ 0.0057 – and the measurements of
Thiele & Eckelmann and of Niederschulte et al., are in approximate agreement. The
data for the fully-developed runs in the present study (solid triangles) are at higher
−Kp and therefore are lower, approaching their respective (lower) asymptotes. The
measurements for our accelerating flow with the highest −Kp (solid circles) have the
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lowest magnitudes of (uv)+ in the viscous layer; their trend is towards a curve of
τ+{y+} (accounting for convective terms) at larger values of y+ than given by the
fully developed asymptote shown.

The measurements of v′ (and therefore v2) and uv permit examination of the model
of Panton & Linebarger (1974) for wall pressure spectra. A key hypothesis of Panton
& Linebarger is that the intensity of the normal velocity component scales with
the Reynolds shear stress and normalized wall distance, i.e. (v2/uv) = f n{y+}, but
does not depend on pressure gradient. McEligot & Eckelmann (2003) employed the
present data to test this hypothesis by comparing results for the quotient (v2/uv).
In the viscous layer, this quantity varies approximately linearly with y+. For the
two fully developed runs, the values decrease slightly as −Kp increases. For the
accelerating runs, the reduction is greater as y+ increases and the slope is less. The
present data indicate that for viscous layers, an improvement in the hypothesis of
Panton & Linebarger may be warranted.

Probability density distributions. The time series have been analysed to develop
probability density distributions for instantaneous streamwise and normal velocities
and their product. The two extreme runs are examined, i.e. data from the accelerating
run at Kp ≈ −0.02 and the run at Kp ≈ −0.008, the higher-velocity fully developed
case. In order to compare results directly, they are presented in terms of wall
coordinates and the fraction of total samples (200 000 in these runs). Thus, for
the streamwise velocity a probability density distribution N ′{ũ+} is defined as∫ ∞

0

N ′{ũ+} du+ =
∑

N ′{ũ+}�u+ = 1.

Here, the symbol ũ+ represents an instantaneous total value of the streamwise
component in wall coordinates. The units of N ′{ũ+} are essentially the fraction of
samples per unit of ũ+. The expected maximum range of ũ+ was divided into 100
intervals �ũ+. The distributions N ′{ṽ+} and N ′{(ũṽ)+} were formed in a like manner
with the exception that their differing ranges led to different interval widths (e.g.
�ṽ+).

When plotted versus linear coordinates (not shown), the results for N ′{ũ+} at
Kp ≈ −0.008 are consistent with those presented by Eckelmann (1974) in his figure 10
for his highest flow rate. The most accelerated run (Kp ≈ −0.02) shows the same
trends and magnitudes as the fully developed run (Kp ≈ −0.008). Thus, we may
conclude that there is no significant effect of streamwise pressure gradient on N ′{ũ+}
from slight to strong values.

The probability density distributions of the normal velocity ṽ+ for the fully
developed case demonstrate the same behaviour as presented in their figure 11
by Brodkey et al. (1974), when plotted versus linear coordinates (not shown). Near
the wall, the distributions are narrower and therefore have higher peak values than
further from the wall. The most probable values of ṽ+ are slightly less than the mean,
i.e. they represent small velocities towards the wall. Magnitudes of ṽ+ much greater
and much less than the probable value are evident; for y+ ≈ 22.2, it is seen that the
maximum value of |ṽ+| is greater than 2 (while the mean is ideally zero).

In order to examine the maximum excursions in ṽ+, the probability density
distributions are presented in semi-logarithmic coordinates in figure 6 (solid symbols
are for the laterally converging case and open symbols are for the fully developed
situation). The general trends of both sets are the same: the peak N ′{ṽ+} is reduced
as N ′{ṽ+} broadens with an increase in y+. Maximum values of |ṽ+| approach 4 and
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Figure 6. Probability density distributions of instantaneous wall-normal velocity (open
symbols: ‘fully developed’, Kp ≈ −0.0083; solid symbols: laterally converging flow,
Kp ≈ −0.020). �ṽ+ = 0.08.

occur for the fully developed run at y+ ≈ 22. The approximately exponential decrease
of N ′{ṽ+} is observed for all locations in both sets of experimental conditions. For
the laterally converging flow the first location (y+ ≈ 5.1) is closer to the wall than in
the fully developed case and its peak N ′{ṽ+} is accordingly higher. An exponential
decrease of values away from the most probable value is seen to very low values of
N ′{ṽ+} (i.e. very few counts). For y+ ≈ 26.3, towards the edge of the viscous layer,
we see values of ṽ+ greater than 2 and as low as −3. The large negative velocities
could correspond to energetic ‘sweeps’ towards the wall and the large positive ones
would represent ‘ejections’ or ‘outward interactions’. For a fully developed flow in the
same channel, Brodkey et al. (1974) concluded via quadrant-splitting analyses that
the outward flow at y+ ≈ 30 was predominantly due to ejections rather than outward
interactions. In contrast to the fully developed flow, near the wall, the most probable
values of ṽ+ (i.e. ṽ+ at the maximum of N ′{ṽ+}) are greater than the mean; further
away, the most probable values are less than the mean, in agreement with the trends
of the fully developed flow.

The probability density distributions for the normal velocity are affected by the
laterally converging flow or streamwise pressure gradient. In addition to the near-wall
differences mentioned above, it appears that towards the outer edge of the viscous
layer, the range of values of ṽ+ is broader for the fully developed case than the
accelerated one (e.g. y+ ≈ 22.2 in the fully developed case compared to the larger
y+ ≈ 26.3 in the accelerated case). Since the locations in the two runs are not at the
same values of y+, we cannot make direct comparisons. We quantified the differences
in the two runs in two ways. From figure 6 one can plot the variation of the apparent
peak N ′{ṽ+} versus y+ for both cases or a measure of the breadth of N ′{ṽ+}
can be evaluated; an appropriate quantity is the width at the level N ′{ṽ+} = 0.01
N ′

max{ṽ+} for each location (McEligot & Eckelmann 2003). The two approaches are
complementary. Near the wall, one cannot discriminate between the results of the
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ṽ)

+
}

(ũṽ)+
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two cases. However, for y+ > 12, the peak value is higher for the accelerated case
and it is narrower than one might expect based on the fully developed distributions.
That is, at a given location near the edge of the viscous layer, the range of values
of ṽ+ observed for Kp ≈ −0.02 is significantly smaller. Since N ′{ũ+} apparently was
not significantly affected, this observation implies that the range of angles of the
instantaneous velocity vector (Kreplin & Eckelmann, 1979b) would be less.

The probability density distributions of (ũṽ)+ (figure 7) generally show the same
trends as N ′{ṽ+}. Since this quantity is formed as the product of the instantaneous
total values of ũ and ṽ (rather than the fluctuations about their means), the mean
value is given by (U+V + + (uv)+) for the accelerated run. The mean product of the
fluctuations (uv)+ ranges between zero and negative unity and U+V + is about one to
two. So it is obvious that excursions of (ũṽ)+, from which the Reynolds shear stress
is derived, are much greater than the mean of (ũṽ)+, particularly near the edge of the
viscous layer (e.g. 50 versus 2). Again, the variation of N ′{(ũṽ)+} in the lower decades
of its magnitude is approximately exponential. And again we see that, in the outer
part of the viscous layer, the width is narrower for the laterally converging case than
for fully developed flow.

Probability density distributions of uv (the product of the fluctuations) at y+ ≈ 30
are presented by Willmarth & Lu (1972) in their figure 14 and at 3.4 < y+ < 195
by Brodkey et al. (1974) in their figure 9. Both studies showed the most probable
values of uv to be near zero and at values of uv greater than uv, which is negative.
Willmarth & Lu suggest that the peak at uv near zero corresponds to the fact that
uv is relatively quiescent much of the time and that the long tail for uv < 0 is a result
of the spiky nature of Reynolds-shear-stress contributions during bursting events.
Brodkey et al. found large negative values of uv near the edge of the viscous layer to
be mostly due to ejections while near the wall they usually represented sweeps.

For our fully developed run, comparable probability density distributions were
observed for the quantity (ũṽ)+. The value of (ũṽ)+ at N ′

max{(ũṽ)+} was likewise
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greater than the mean of (ũṽ)+, except for y+ ≈ 5.6 where they were approximately
equal. Some changes are evident for the accelerated case. Near the wall, the value
of (ũṽ)+ for the peak N ′{(ũṽ)+} was about the same as the mean of (ũṽ)+; then
for y+ ≈ 7.4 and 10.8 it was larger (more positive), as for the fully developed run.
However, towards the edge of the viscous layer, this relative trend decreased, with the
value of (ũṽ)+ for the peak N ′{(ũṽ)+} being about the same as the mean of (ũṽ)+ at
y+ ≈ 16, and then at y+ ≈ 26.3 the trend reversed with the value of (ũṽ)+ for the
peak N ′{(ũṽ)+} becoming less than the mean of (ũṽ)+.

The logarithmic scale of the ordinate allows better examination of the distributions
of extreme values than a linear presentation does. The ‘tails’ of the distributions
at N ′{(ũṽ)+} < ∼0.01 appear generally non-symmetric relative to the means. These
extremes represent the larger values of |ũṽ|, more ‘energetic’. The values of N ′{(ũṽ)+}
are greater for a given negative value of (ũṽ)+ than for the equivalent positive value.
Negative values of (ũṽ)+ correspond to momentum transport by sweeps and ejections
while positive ones are from wallward and outward interactions. This observation is
another indication that large values of |ũṽ| are more likely to come from sweeps and
ejections than from interactions.

The N ′{(ũṽ)+} distributions for y+ ≈ 13.2 and 22.2 in the fully developed run are
wider than for y+ ≈ 16.0 and 26.3, respectively, in the accelerated run. (This result
corresponds to an earlier comment concerning the N ′{ṽ+} distribution.) Consequently,
we may conclude that another effect of a strong streamwise pressure gradient is to
reduce the magnitudes of the largest values of |(ũṽ)+| in the outer part of the viscous
layer – and this reduction is smaller owing to the smaller maximum value of |ṽ+|.
The lower value of the Reynolds shear stress (uv)+ for Kp ≈ −0.02 has already been
shown in figure 5.

In summary, the probability density distributions for ũ+ show no significant effects
of the streamwise pressure gradient, while those for ṽ+ and (ũṽ)+ do so near the edge
of the viscous layer. For the converging flow, the transport of momentum is reduced
there compared to the fully developed case, as demonstrated by the comparison for
y+ ≈ 13.2 and 22.2 (fully developed) to those of y+ ≈ 16.0 and 26.3 (converging)
and by figure 5. This observation implies lessening of the vigour of the ejections as
confirmed by the trends of N ′{ṽ+} as well.

Skewness and flatness. The skewness and flatness factors were calculated from the
time series for u and v to quantify some aspects of the probability density distributions.
The present data for skewness and flatness factors, S and F , are compared to those
of other authors in figures 8 and 9.

Thiele & Eckelmann (1994) noted that, ‘Whereas smooth curves result for the u

component in all investigations, the skewness factors of the normal fluctuations are
characterized by considerable scatter in the results of all authors’ (those included
in their comparisons). For the present data, we could generally connect the plotted
points with smooth curves for each individual run, despite the magnitudes of the
estimated experimental uncertainties. Unfortunately, the other authors have not
presented quantitative estimates of their uncertainties. Our estimates showed the
experimental uncertainties in Su and Fu to be about an order-of-magnitude smaller
than those for Sv and Fv; the uncertainties in Su and Fu are about the size of
the symbols in our graphs (or less). For Sv our uncertainty estimates varied from
about 0.08 to 0.19 for the runs with the highest and lowest pressure gradients; these
estimates are shown on figure 9a by vertical brackets. Thiele & Eckelmann suggest
that measurement uncertainties have greater effects on the calculation of higher
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fluctuations (—, Moser et al. (1999) web site; other symbols as in figures 3 and 4).

moments when the probability density distribution is narrow – as it is for the normal
component. Also, for their boundary layers, Klewicki & Falco (1990) demonstrated
that considerably more sampling time was required for convergence of skewness and
flatness factors than for mean and root-mean-square determinations.

Most data for the skewness factors of the streamwise fluctuations Su agree closely
with the predictions of MKM99, with the present measurements for the fully
developed runs (solid triangles) agreeing as well or better than the others (figure 8a).
We can discern a slight effect of pressure gradient, with Su being higher near the wall
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and lower for y+ > 20 or so. These trends are consistent with the measurements by
Durst et al. (1998) at −Kp ≈ 0.012, a moderate pressure gradient.

As with the skewness factor, the measurements of the flatness factor for streamwise
fluctuations Fu (figure 8b) agree closely with the MKM99 predictions, and the present
data are as close or closer than the others. The pressure gradient appears to induce a
slight increase for low y+ and a decrease for higher distances, but the effects observed
are of the order of the uncertainty estimates (approximately the size of the symbols)
so they are not definitive. The data of Durst et al. (1998) at −Kp ≈ 0.012 show
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greater effects, but greater scatter and trend in the opposite direction for y+ greater
than about 20.

For Sv , the present measurements and some others disagree with the DNS
predictions for y+ less than 20 (figure 9a). The present measurements show consistent
trends and possibly some variation with pressure gradient: Sv increases from negative
values at low y+ to maxima at y+ ≈ 10–15 and then decreases to near zero. Our
data are in approximate agreement with those of Niederschulte et al. (1990) and
Kreplin & Eckelmann (1979c), but differ somewhat from the experiment of Thiele &
Eckelmann (1994). For 6 < y+ < 20, the present data yield a positive skewness factor
while MKM99 predict it to be negative; further, the decreasing trend for y+ < 10 is
opposite to the trend predicted by DNS. Above y+ of about 20, most show Sv close to
zero in the viscous layer. The reason for the differences from MKM99 are not clear,
but it may be worth noting that the spatial resolution of the present hot-film probes
is apparently better in the streamwise and spanwise directions than the DNS which
uses a grid with �x+ ≈ 18 and �z+ ≈ 6. The differences with increasing pressure
gradients are less than the estimated experimental uncertainties so one cannot claim
that the apparent trends are valid. However, one may discern that the run with
maximum acceleration shows lower values than the fully developed runs for y+ < 8
and higher ones for y+ > 10; one then sees that such observations are consistent with
the comments above concerning the effects of the pressure gradient on the peaks of
N ′{v+} in the examination of the probability density distributions.

For Fv , as with the measurements of others, the present data converge with
the DNS predictions towards the outer edge of the viscous layer (figure 9b). In
1994, Thiele & Eckelmann commented that an experimental verification of the
values calculated by KMM for y+ < 20 had not been possible to that date; for
y+ > ∼15, the present fully developed measurements agree closely with the database
of MKM99 at their lowest Reynolds number (essentially equivalent to KMM and
MKM88). However, with the exception of a few points by Thiele & Eckelmann
(1994) at y+ < 5, most data disagree with the large increase predicted by DNS as
the wall is approached. Our measurements approximately support the suggestion
of Niederschulte et al. (1990) that Fv is near constant in this region. At low
y+, there is general agreement with the data of Kreplin & Eckelmann and of
Niederschulte et al. Again, there is no significant effect of the increases in pressure
gradient for the present experiment; differences observed between the highest and
lowest values of Kp are about the order of the uncertainty estimates (vertical
brackets).

Correlations. Since the mean structure showed only a gradual variation with Kp ,
when it showed any significant effect at all, the rest of the present study concentrates
on the two extremes. Results for the highest streamwise pressure gradient, Kp ≈ −0.02,
are compared to those for Kp ≈ −0.008, the lowest. The latter is the condition near
which much of the earlier structure results have been presented: fully developed flow
at the maximum flow rate of the oil channel (Wallace et al. 1972; Eckelmann 1974;
Randolph 1987). The location of y+ ≈ 15 was chosen since it corresponds to the
most energetic (and most popular) location for conditional analyses (Blackwelder &
Kaplan 1976).

The cross-correlation coefficients are defined as

Ruiuj
{y+, τ} = (1/T )

∫ T

0

[(ui{y+, t}uj {y+, t − τ})/(ui,rmsuj,rms)] dt,
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Figure 10. Correlation coefficients with cross-wire probe located in the viscous layer
(y+ ≈ 15): (a) laterally converging flow, Kp ≈ −0.020, (b) comparisons of auto-correlations
of streamwise velocities (dashed: ‘fully developed’, Kp ≈ −0.0083; solid: laterally converging,
Kp ≈ −0.020), (c) comparisons of u, τw correlations and (d) comparisons of u, v correlations
(symbols in (c) and (d) as in (b)).

where ui or uj represents any of the deduced fluctuation signals and y+ is the location
of the cross-wire probe when involved. Typically, ui was taken as the streamwise
velocity fluctuation, u. With i = j , the result reduces to the autocorrelation for the
quantity. The results are plotted and presented as correlation coefficients versus non-
dimensional lead time τ+, defined as tu2

τ /ν where t is the time; to avoid confusion,
this symbol is not used to represent normalized shear stress in the present section. (In
this section and the next, the symbol τw will denote the fluctuation of the wall shear
stress rather than its mean.)

Several correlation coefficients for the laterally converging flow at Kp ≈ −0.02 are
compared in figure 10(a). For the fully developed flow at Kp ≈ −0.008, the trends
and magnitudes are qualitatively the same. The autocorrelation of the streamwise
component peaks at about 1 as it should and shows the expected symmetry. The
normal component v shows less correlation with u, both in peak value and duration
of significant correlation. The u, v correlation is negative, indicating that v tends to
be negative when u is positive and vice versa – a sweep towards the wall corresponds
to an increase in u and an ejection to a retardation of u. The greatest u, v correlation
is slightly after the peak in the u-autocorrelation, say at τ+ ≈ 3 or so.

The best correlation of τw with u is greater than 0.8 and occurs at τ+ ≈ −12.
The u, τw correlation actually shows a greater correlation between u at y+ ≈ 15 and
τw (i.e. at the wall) than does the correlation between u and v both at y+ = 15,
the same location. The peak magnitude is almost twice as large, and the duration
is considerably longer. These observations and those of Eckelmann (1974) help to
explain the success CMM had in using the temporal wall shear stress for detection in
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a VITA sampling technique to deduce average bursting periods of laterally converging
flows; while the VITA technique has usually been applied near y+ ≈ 15 to detect
bursting, the close correlation between τw and u permits use of τw as an alternative
approach.

In figures 10b–10d, the individual correlations will now be compared directly for
the two flow conditions; here the solid curves represent the flow with the larger
pressure gradient (Kp ≈ −0.02) and the dashed lines give the fully developed results
for reference.

For the u-autocorrelations (figure 10b), by definition both peak at unity at zero lead
time, τ+ = 0. The autocorrelation at Kp ≈ −0.02 is broader, i.e. greater correlation
over a longer non-dimensional time. This result corresponds to the observation of
CMM that, as the magnitude of Kp increases, the bursting frequency decreases or
the bursting period increases in terms of wall coordinates. The longer average time
between randomly occurring bursts would allow eddies to remain coherent longer in
the vicinity of the measuring instrument. For the fully developed flow, there seems to
be a slight change in the trend of the slope in the range 50 < τ+ < 70, indicating a
slightly increased correlation with some phenomenon at τ+ near 60.

In figure 10(c), the peak value of the correlation between u and τw is approximately
the same for both flows, but it is slightly later (more negative lead time) in the
accelerated case. This observation may be a first indication that the inclination of
the fronts of the sweep events (Kreplin & Eckelmann 1979c) changes with variation
of the pressure gradient. As with the other correlations discussed, in the accelerated
flow the u, τw correlation is broader.

For the u, v correlations (figure 10d) – the peak value is almost the same for both as
is its lead time; there are minuscule differences, but they are likely less than the typical
experimental uncertainty. Again the correlation is broader with the larger pressure
gradient. The fully developed results are nearly uncorrelated for τ+ < −15, whereas
the values for Kp ≈ −0.02 are just approaching zero at the limit of the calculation at
τ+ ≈ −45. After the peak, u and v remain slightly more correlated for Kp ≈ −0.02
than for the fully developed run.

The values of Ruv at τ+ = 0 reveal consistencies in the data and implications
for v′ (and uv) that are not obvious from direct examination of v′/uτ alone. The
quantity Ruv{y+, τ+ = 0} is sometimes called the correlation coefficient (it may be
calculated directly from the mean statistics as uv/(u′v′) without forming the more
complete correlation). From this figure, we see it is almost exactly the same for
the two extreme cases plotted; the difference is less than 1 %. The Reynolds shear
stress uv decreases about 50 % from the fully developed flow to the accelerated flow
at y+ ≈ 15. This decrease is shared somewhat equally between the r.m.s. values, u′

and v′, in yielding the same value of Ruv . However, treating these results in wall
coordinates gives a different picture. The quantity uv/u2

τ decreases (as expected since
the total τ/τw decreases at this location), but only about 14 %. The corresponding
change in non-dimensional r.m.s. values is almost all in the normal component; v′/uτ

decreases about 14 % and u′/uτ decreases less than 1 %. In other words, if u′{y+}/uτ

does not show a significant effect due to varying Kp , then v′{y+}/uτ must do so –
as seen earlier in figure 4(b) – in order to remain consistent with the effect on
τ{y+}/τw .

The general effects of increasing Kp appear to be a broadening of the correlations
over longer non-dimensional times. This observation seems reasonably consistent
with the idea that increase of the bursting period (as Kp increases) leads to a better
organized flow in the wall region. Longer non-dimensional time scales can be expected
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as in (b)).

to relate to larger non-dimensional length scales, such as the increase in ‘linear’ layer
thickness or the van Driest ‘constant’ A+ required in mixing length predictions of the
mean velocity profile. That is, the average structures must become larger in terms of
non-dimensional wall variables.

Spectra. The power spectral densities for the wall shear stress fluctuations and the
velocity fluctuations at y+ ≈ 15 are presented in figure 11. These spectra are defined
(Brigham 1974; Press et al. 1988) as

h2 = (1/T )

∫ T

0

|h{t}|2 dt =

∫ ∞

0

P ′
h{f } df = h2

∫ ∞

0

Φh{f } df,

where h{t} represents the fluctuation of interest and P ′
h{f } is its one-sided power

spectral density per unit time. They are normalized by division so that∫ ∞

0

Φh{f } df = 1.

The non-dimensional frequency f + and power spectral density Φ+
h are based on wall

variables (inner scaling). For the spectra of the fluctuations, Φ+
u , Φ+

v or Φ+
τ , the

instantaneous values of the fluctuations are inserted for h{t}, e.g. h{t} = u{t} and so
forth. For Φ+

uv , we calculate h{t} = (u{t}v{t} − uv) so it can be considered to be the
fluctuation of the product uv (fluctuations themselves) about its mean, the Reynolds
shear stress. Thus, Φ+

uv is not formed from the product of the Fourier transforms of
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u and v, which could be considered to give an ‘instantaneous Reynolds shear stress’
spectrum (or co-spectrum).

For the laterally converging flow at Kp ≈ −0.02, figure 11(a) shows the comparison
of the spectra of the various fluctuating quantities. The least high-frequency content
is seen for τw; this variable is modulated to some extent by the dominance of
molecular transport near the wall and, possibly, by wall conduction effects noted
by Alfredsson et al. (1988) for the same channel. The spectrum Φ+

uv has the most
high-frequency content, with the v spectrum having almost the same magnitude and
with the spectrum for streamwise fluctuations u falling at intermediate values between
those of τw and of v. This observation indicates that the high-frequency fluctuations
for uv are predominantly due to normal fluctuations rather than streamwise ones.

The spectra for the fully developed flow at Kp ≈ −0.008 show the same trends and
approximate magnitudes as the converging flow shown in figure 11(a). That is, the
large favourable streamwise pressure gradient does not appear to cause large effects
on the non-dimensional spectra at this location.

The other subfigures in figure 11 compare the individual spectra directly for the two
extreme cases. In all comparisons, the high-frequency regions of the spectra for the
accelerated flow are at lower non-dimensional frequencies than for the fully developed
flow. This result is consistent with the apparent broadening of the correlations relative
to non-dimensional time. Examining these subfigures, we see Φ+

uv to be least affected
by the strong favourable pressure gradient (figure 11d); results for Φ+

v (not shown)
are of approximately the same magnitude. While v′/uτ is apparently lowered about
25 % at y+ ≈ 15 for the converging flow compared to the fully developed case,
there is no large effect on Φ+

u or Φ+
uv (figures 11b and 11d). The spectra of the wall

shear stress fluctuations Φ+
τ demonstrate the greatest effect from the strong pressure

gradient (figure 11c), but in non-dimensional terms this effect is still not large.

4. Concluding remarks
New fundamental measurements have been obtained for turbulent flow in a

converging duct, concentrating on the viscous layer where significant resistances
to wall heat, momentum and mass transfer arise. A convergence induces a streamwise
acceleration and, thereby, a favourable streamwise pressure gradient.

Provided −Kp is sufficiently small, the viscous layer can be considered to be a
constant stress region. In that case, we would expect viscous layer behaviour to
be quantitatively the same for boundary layers with or without pressure gradients,
converging ducts and fully developed duct flows. A criterion for the reduction in
shear stress to be 5 % or less at y+ ≈ 30 leads to a threshold value of −Kp ≈ 0.002
for fully developed turbulent flows; the streamwise momentum equation (Finnicum
& Hanratty 1988) indicates that the convective terms moderate the effect of the
pressure gradient so the threshold will be slightly higher for accelerating flows. As
shown by Patel (1965), −Kp varies inversely with Reynolds number in constant area
ducts, so low-Reynolds-number turbulent flows inherently have significant streamwise
pressure gradients. Consequently, the first direct numerical simulations for duct flows
did not have negligible pressure gradients. For higher values of −Kp , wall functions
in turbulence models can be expected to become inadequate unless they account for
the pressure gradient. A further constraint on generality of viscous layer behaviour
is that the boundary condition away from the surface of interest should be located
sufficiently far away that there is no significant interaction between that boundary
and the viscous layer of concern. An approximate criterion that the distance be
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greater than ten times the viscous layer thickness leads to a requirement of 300 wall
units or more; for a channel with fully developed flow, this constraint translates to
−Kp ≈ 0.003 or less. Whereas some effects from various geometries can be expected
to be qualitatively the same, their magnitudes can be expected to differ at the same
value of −Kp when these thresholds are exceeded.

As noted earlier, effects of a favourable streamwise pressure gradient are to
reduce bursting rates and to ‘thicken’ the viscous layer. Consequently, the apparent
logarithmic region of the mean streamwise velocity profile is shifted upward as the
Reynolds number is lowered or the pressure gradient is increased. At low acceleration
parameters, Kv or low −Kp , simple turbulence models – such as that of van Driest
(1956) – provide adequate predictions of this profile.

The present study extends the earlier work of Eckelmann and colleagues with
the same facility and supplements other recent measurements for turbulent flows
accelerating in the streamwise direction. The objectives are to determine which
features of the turbulence structure remain relatively invariant in the viscous layer, to
quantify the variation of the others with moderate to strong streamwise pressure
gradients and to confirm or refute the DNS predictions of reductions in (v′)+

with increasingly favourable pressure gradients. Use of the oil channel permitted
meaningful measurement of the wall-normal component and related statistics in
the viscous layer where others could not obtain data owing to problems of spatial
resolution. Simultaneous time series data were obtained with an cross-wire probe and
a wall sensor to determine ũ{t}, ṽ{t} and τ̃w{t}. Measurements with the cross-wire
probe at y+ ≈ 5, 7, 10, 15, 25 and the centreplane concentrated on four sets of
conditions of increasing severity of non-dimensional pressure gradient −Kp: two for
converging flows and two for fully developed ones. The two sets of data obtained
for fully developed flow agreed well with predictions by direct numerical simulations
and with measurements by other investigators at low values of the pressure gradient
parameter.

Other than the increase of the mean velocity profile, the statistics for the streamwise
component suffered no significant effect of pressure gradient. Non-dimensional
temporal cross-correlations at y+ ≈ 15 broadened slightly. For both high and low
−Kp , the correlation between u at y+ ≈ 15 and the shear stress at the wall is stronger
and of longer duration than between u and v at the same location. This observation
and the comparable time series by Eckelmann (1974) help to explain the success of
Chambers et al. (1983) in using a wall sensor to deduce apparent bursting rates in a
small converging duct.

The key new results are the measurements of the fluctuating normal component and
related statistics in the viscous layer. For y+ > ∼15, the root-mean-square fluctuation
(v′)+ decreases as the pressure gradient is increased. This observation supports the
trends of the DNS predictions of Spalart (1986) and Finnicum & Hanratty (1988).

The probability density distributions for the instantaneous normal velocity N ′{ṽ+}
are affected by the streamwise pressure gradient. Towards the outer edge of the
viscous layer, the range of values of ṽ+ is broader for the fully developed case than
the accelerated case. Since N ′{ũ+} was not significantly affected, this observation
implies that the range of angles of the instantaneous velocity vector (Kreplin &
Eckelmann 1979b) would be less. Comparable probability density distributions were
observed for the instantaneous quantity (ũṽ)+. The ‘tails’ of N ′{(ũṽ)+} in figure 7
appear generally non-symmetric: the values of N ′{(ũṽ)+} are greater for a given
negative value of (ũṽ)+ than for the equivalent positive value. Negative values of
(ũṽ)+ correspond to momentum transport by sweeps and ejections whereas positive
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ones are from wallward and outward interactions. This observation is an indication
that large values of |ũṽ| are more likely to come from sweeps and ejections than from
interactions. Also near the edge, N ′{(ũṽ)+} distributions in the fully developed run
are wider than in the accelerated run. Consequently, we may conclude that another
effect of a strong streamwise pressure gradient is to reduce transport of momentum
in the outer part of the viscous layer. In conjunction with the trends of N ′{ṽ+}, this
observation implies lessening of the vigour of the ejections as well.

For the higher-order moments of the normal fluctuations, Sv and Fv , the increased
experimental uncertainties preclude identifying definite effects of the pressure gradient.
However, near the wall our measurements of Sv and Fv and those of others differ
from the trends of the DNS predictions – and the differences are greater than the
experimental uncertainties. The reason is not clear, but it may be observed that
the spatial resolution of the measurements is typically better in the streamwise and
spanwise directions than the sizes of the DNS grids.
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63/1976, Max Planck Institut für Strömungsforschung und AVA Göttingen. PhD dissertation,
University of Göttingen.

Kreplin, H.-P. & Eckelmann, H. 1979a Propagation of perturbations in the viscous sublayer and
adjacent wall region. J. Fluid Mech. 95, 305–322.

Kreplin, H.-P. & Eckelmann, H. 1979b Instantaneous direction of the velocity vector in a fully-
developed turbulent channel flow. Phys. Fluids 22, 1210–1211.

Kreplin, H.-P. & Eckelmann, H. 1979c Behaviour of the three fluctuating velocity components in
the wall region of a turbulent channel flow. Phys. Fluids 22, 1233–1239.

Launder, B. E. 1964 Laminarization of the turbulent boundary layer by acceleration. MIT Gas
Turbine Lab. Rep. 77. Also NASA N66-16042.

Launder, B. E. & Jones, W. P. 1969 Sink flow turbulent boundary layers. J. Fluid Mech. 38, 817–831.

Loyd, R. J., Moffat, R. J. & Kays, W. M. 1970 The turbulent boundary layer on a porous plate:
an experimental study of the fluid dynamics with strong favourable pressure gradient and
blowing. Tech. Rep. HMT-13, Thermosci. Div., Mech. Engr. Dept, Stanford University.

McEligot, D. M. 1984 Measurement of wall shear stress in accelerating turbulent flows. Bericht
109/1984, Max Planck Inst. für Strömungsf., Göttingen, BRD.
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